One of the keys to understanding lifelong health is to understand the signalling pathways that operate inside cells and govern key fate decisions such as cell death, cell survival, cell division or cell senescence (collectively cell longevity). These signalling pathways involve enzymes called ‘protein kinases’ that attach phosphate groups to specific cellular proteins, thereby controlling their activity, location or abundance. In this way protein kinases orchestrate the cellular response to growth factors, nutrient availability or stress and damage.
Ageing results in part from the imbalance between cellular damage, accrued throughout life, and the progressive decline in stress response and repair pathways. We are interested in how protein kinases function in stress responses, the removal of damaged cellular components (e.g. autophagy, see also and ) and the control of cellular lifespan. We believe this will enhance our understanding of how the normal declines in these processes drive ageing.
Signalling pathways are frequently de-regulated in certain age-related diseases – notably in cancer, inflammation and neurodegeneration – and many protein kinases are attractive drug targets. Consequently we translate our basic knowledge of signalling through collaborations with charities and pharmaceutical companies (e.g. AstraZeneca and MISSION Therapeutics).
Implantation of a human embryo into the endometrium is a crucial event in gestation, as it marks the initiation of a pregnancy and is prone to high failure rates. We have limited understanding of these stages because of the inaccessibility of implanting embryos and the lack of suitable model systems. Here, we establish an in vitro model that recapitulates the luminal, glandular, and stromal compartments of the superficial layer of receptive human endometrium. Human embryos and blastoids implant into the endometrial model, achieving post-implantation hallmarks including advanced trophoblast structures that underlie early events in placental development. Single-cell RNA sequencing of the embryo-endometrial interface at day 14 uncovers predicted molecular interactions between conceptus and endometrium. Disrupting signaling interactions between extravillous trophoblast and endometrial stromal cells caused defects in trophoblast outgrowth, demonstrating the importance of crosstalk processes to sustain embryogenesis. This platform opens the opportunity to investigate early stages of human embryo implantation.
Hypoxia is both a physiological and pathological signal in cells. Changes in gene expression play a critical role in the cellular response to hypoxia, enabling cells to adapt to reduced oxygen availability. These changes are primarily mediated by the HIF family of transcription factors, however, other transcription factors such as NF-κB, are also activated by hypoxia. Although NF-κB is known to be activated by hypoxia, the extent to which NF-κB contributes to the hypoxic response remains poorly understood. Here, we analysed hypoxia-induced, NF-κB-dependent gene expression, to define the NF-κB-dependent hypoxic signature. Our analysis reveals that most genes downregulated by hypoxia require NF-κB for their repression. We show that although the NF-κB-mediated hypoxic response may vary between cell types, a core subset of hypoxia-inducible genes requires NF-κB across multiple cell backgrounds. We demonstrate that NF-κB is critical for reactive oxygen species (ROS) generation and regulation of genes involved in oxidative phosphorylation under hypoxia. This work highlights NF-κB's central role in the hypoxia response and offering new insights into gene expression regulation by hypoxia and NF-κB.
Mutations in KRAS, particularly at codon 12, are frequent in adenocarcinomas of the colon, lungs and pancreas, driving carcinogenesis by altering cell signalling and reprogramming metabolism. However, the specific mechanisms by which different KRAS G12 alleles initiate distinctive patterns of metabolic reprogramming are unclear. Using isogenic panels of colorectal cell lines harbouring the G12A, G12C, G12D and G12V heterozygous mutations and employing transcriptomics, metabolomics, and extensive biochemical validation, we characterise distinctive features of each allele. We demonstrate that cells harbouring the common G12D and G12V oncogenic mutations significantly alter glutamine metabolism and nitrogen recycling through FOXO1-mediated regulation compared to parental lines. Moreover, with a combination of small molecule inhibitors targeting glutamine and glutamate metabolism, we also identify a common vulnerability that eliminates mutant cells selectively. These results highlight a previously unreported mutant-specific effect of KRAS alleles on metabolism and signalling that could be potentially harnessed for cancer therapy.
Prasanna Channathodiyil, Anne Segonds-Pichon, Paul D. Smith, Simon J. Cook, Jonathan Houseley